
An Oblivious Approach to Parallel Algorithms∗

Francesco Silvestri

Department of Information Engineering

University of Padova, Italy

E-mail: silvest1@dei.unipd.it

Abstract

This extended abstract describes my dissertation
work undertaken at the University of Padova under
the supervision of Prof. A. Pietracaprina. My work
has focused on the development of network-oblivious
algorithms, that is, parallel algorithms that can run
unchanged yet efficiently on a variety of machines
characterized by different degrees of parallelism
and communication capabilities. Also, I have
studied the limitations of the cache-oblivious and
network-oblivious approaches.

Keywords: Network-oblivious, cache-oblivious,
parallel algorithms, memory hierarchy.

Introduction

Intuitively, a cache-oblivious algorithm [3] imple-
ments an adaptive strategy which runs efficiently
on any memory hierarchy without requiring previ-
ous knowledge of the hierarchy parameters. For this
reason, cache-oblivious algorithms are particularly
attractive in a global computing environment, where
software may be run on a variety of different plat-
forms for load management purposes. In such a sce-
nario the actual platform onto which an application
is ultimately run, may be unknown at the time when
the application is designed. In the recent years, a lot
of effort in literature has been concentrated upon the
development of efficient cache-oblivious algorithms
for many problems, and some cache-oblivious tech-
niques have also been commercialized (e.g., Tokutek,

∗Some research papers cited in this extended abstract
are available at http://www.dei.unipd.it/∼silvest1. This
work is supported in part by the EU/IST Project “AEOLUS”,
and by MIUR of Italy under projects “MAINSTREAM”.

Inc. developed a storage technology based on cache-
oblivious B-trees).

Since the advent of Chip Multiprocessors
(CMPs), the design of efficient yet portable parallel
algorithms has received more attention. While the
issue of portability is less crucial for algorithms de-
veloped for special-purpose massively parallel plat-
forms (e.g., IBM BlueGene/L), it becomes a pri-
mary concern when designing algorithms for CMPs
which are likely to be used in a variety of application
scenarios and with different (possibly unknown) ma-
chine configurations. In literature there are many
models, like the Decomposable Bulk Synchronous
Parallel (D-BSP) model [1], which efficiently de-
scribe many significant parallel platforms through
few parameters. However, algorithms formulated in
these models require the estimation of several archi-
tectural parameters, which may be hard and time
consuming to do in practice.

Dissertation work

It is natural to wonder whether, at least for some
problems, parallel algorithms can be designed that,
while independent of any model parameters, are
nevertheless efficient for a wide range of such pa-
rameters. My dissertation work has focused on this
question, that is, on exploring the world of network-
oblivious algorithms.

The explorative work [4] gives the first insight into
the relations between parallel algorithms and cache-
oblivious ones. This work provides a simulation
technique through which efficient cache-oblivious al-
gorithms are obtained from efficient parallel ones,
thus reinforcing the known relation between paral-
lelism and memory hierarchies. A natural question
arises regarding the possibility of developing par-

1

allel algorithms which are oblivious to certain ma-
chine parameters. In [2] we addressed this issue
by introducing the notion of network-oblivious algo-
rithms and by defining a framework for their design
and analysis. This framework is composed of three
models of computation: the algorithm specification
model M(n), which consists of a clique of proces-
sors whose number is a function of the input size n;
the algorithm evaluation model M(p, B), which is
still a clique but defined by two parameters, i.e. the
processor number p and the communication block-
size B which capture parallelism and granularity of
communication respectively; the execution machine
model, which aims to describe the platforms where
algorithms are actually carried out through few pa-
rameters. We adopted the D-BSP [1] as execution
machine model. A network-oblivious algorithm is
an algorithm formulated in the M(n) model, whose
communication complexity is, roughly speaking, the
number of communications performed by its execu-
tion on an M(p, B). More interesting, for a wide
class of network-oblivious algorithms, optimality in
the evaluation model for all values of the two pa-
rameters implies optimality on an arbitrary config-
uration of parameters of the execution model.

To help placing the network-oblivious framework
in perspective, it may be useful to compare it with
the well established cache-oblivious framework. In
the latter, the specification model is the Random
Access Machine; the evaluation model is the Ideal
Cache model [3], which is composed of a slow un-
bounded memory and one level of cache described
by its size and line length; the execution model is a
machine with an arbitrary multilevel memory hier-
archy. Moreover, optimality in the two-level model
for all values of the two cache parameters translates
into optimality on an arbitrary multilevel hierarchy.

In [2], optimal network-oblivious algorithms for
matrix multiplication, matrix transposition, sorting,
and Fast Fourier Transform are provided. It must be
noticed that many of these network-oblivious algo-
rithms are reminiscent of their cache-oblivious coun-
terparts. Moreover, matrix transposition shows a
similar negative result on both the cache-oblivious
and network-oblivious frameworks. Specifically,
many cache-oblivious algorithms reach optimality
only in those caches where the cache size is at least
the square of the line length (tall-cache assump-
tion). In [6, 5] it is proved that there cannot ex-

ist a cache-oblivious algorithm for performing any
rational permutation for all values of the cache pa-
rameters. This result implies that a cache-oblivious
algorithm for matrix transposition or the reverse of
a vector, which are special cases of rational permu-
tations, cannot be optimal in every cache. Similarly,
in the network-oblivious scenario, many algorithms
reach optimality only in those models which satisfy
an assumption which requires input size, processor
number and communication block length to verify a
technical relation which is similar to the tall-cache
assumption. In [2] it is proved that there cannot ex-
ist a network-oblivious algorithm for matrix trans-
position whose communication complexity is opti-
mal for all values of the parameters of the evaluation
model.

Further research

These results offer many new research opportu-
nities. Naturally, the design of efficient network-
oblivious algorithms can be considered for many key
problems, beyond the few case studies provided in
[2]. It would also be useful to identify other classes
of machines for which network-oblivious optimality
translates into optimal time, and to develop lower-
bound techniques that limit the level of optimal-
ity that cache and network-oblivious algorithms can
reach on certain classes of target platforms.

References

[1] G. Bilardi, A. Pietracaprina, and G. Pucci. Decom-
posable BSP: A bandwidth-latency model for parallel
and hierarchical computation. In J. Reif and S. Ra-
jasekaran, editors, Handbook of Parallel Computing.
Chapman & Hall/CRC, 2008.

[2] G. Bilardi, A. Pietracaprina, G. Pucci, and F. Sil-
vestri. Network-oblivious algorithms. In Proc. of the
21st IPDPS, 2007.

[3] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ra-
machandran. Cache-oblivious algorithms. In Proc.
of the 40th FOCS, pages 285–298, 1999.

[4] A. Pietracaprina, G. Pucci, and F. Silvestri. Cache-
oblivious simulation of parallel programs. In Proc. of
the 8th APDCM Workshop, 2006.

[5] F. Silvestri. On the limits of cache-oblivious matrix
transposition. In Proc. of the 2nd TGC, LNCS 4661,
pages 233–243, 2006.

[6] F. Silvestri. On the limits of cache-oblivious rational
permutations. Special Issue of Theoretical Computer
Science on the 2nd TGC, to appear.

2

EXAMPLES OF NETWORK-OBLIVIOUS ALGORITHMS

MATRIX MULTIPLICATION

Problem: multiplying two matrices, A and B

1) Row-major distribution of A and B among the n PEs

2) Subdivision of the problem into 8 subproblems

3) Each subproblem is solved in parallel within a distinct segment of

n/8 PEs

∑ Optimal communication complexity on M(p, B) for

p ≤ n and B ≤ n/p

∑ Optimal communication time on D-BSP(p, g, B) for p ≤ n

and B
i
 ≤ n/p

BANDWIDTH-LATENCY MODELS

∑ Broad consensus on bandwidth-latency models:

” Parameters capture relevant machine characteristics

” Logarithmic number of parameters sufficient to achieve high effectiveness

 (e.g., D-BSP) [Bilardi et al., 1999]

LIMITS OF OBLIVIOUS APPROACHES

∑ We denote with cache/network-aware an algorithm whose specification depends on the parameters of the respective
evaluation model

FRAMEWORK FOR NETWORK-OBLIVIOUS ALGORITHMS

AN OBLIVIOUS APPROACH TO PARALLEL ALGORITHMS
Francesco Silvestri, silvest1@dei.unipd.it

Advisor: Prof. Andrea Pietracaprina
 Ph.D. Forum
Miami, Florida
April 17, 2008

NETWORK OBLIVIOUS ALGORITHMS

∑ Network-oblivious algorithm specification is:

” independent of network topology

” independent of the actual number of processors

EVALUATION OF NETWORK-OBLIVIOUS

ALGORITHMS

∑ The communication complexity of a network-oblivious

algorithm is given by its execution on an M(p, B)

∑ Execution of an M(n)-algorithm on an M(p B), with p ≤ n:

” Every PE of M(p, B) simulates a segment of n/p consecutive

PEs of M(n)

” Communications between PEs of M(n) in the same segment ⇒

local computations in M(p, B)

SPECIFICATION MODEL M(n)

∑ n Processing Elements (PEs)

∑ An algorithm A is a sequence of supersteps

∑ In a superstep each PE can:

” perform operations on local data

” send/receive messages to/from PEs

∑ The M(n) is a BSP [Valiant, 1990] with no

bandwidth and latency parameters

Specification model:

parallelism function of input size,
no machine parameters

Evaluation model:

introduces number p of Processing
Elements (PEs) and

communication block size B

Execution model:

introduces hierarchical network
structure

DEFINITION

A network-oblivious algorithm for a
problem ß is an M(n)-algorithm where n

is a function of the input size

EVALUATION MODEL M(p, B)

∑ M(p, B) is an M(p) where:

” Data exchanged between two PEs travel within
blocks of B words

” Block-degree hs(p, B): maximum number of blocks
 sent/received by a PE in a superstep s

” Communication complexity of A:

EXECUTION MODEL D-BSP(p, g, B)

∑ p Processing Elements (PEs)

∑ Recursive decomposition into i-clusters of p/2i PEs, 0 ≤ i < log p

∑ An algorithm A is a sequence of labeled supersteps

∑ In an i-superstep, a PE can:

” Perform operations on local data

” Send/receive messages to/from PEs in its i-cluster

∑ A D-BSP(p, g, B) is an M(p, ·) with a hierarchical network structure:

” g=(g0, …, glog p - 1), B=(B0, …, Blog p - 1)

” gi ⇒ reciprocal of the bandwidth in an i-cluster

” Bi ⇒ block size for communications in an i-cluster

∑ Communication time of an i-superstep: hs(p,B
i
)g
i

∑ Communication time of A:

∑ An M(p, ·)-algorithm can be naturally translated in a D-BSP(p, g, B)-algorithm by

suitably labeling each superstep

DEFINITION

A network-oblivious algorithm A for c is optimal
if, ∀ instance of size n and ∀ p ≤ n and B ≥ 1, the
execution of A on an M(p, B) yields an algorithm
with asymptotically minimum communication
complexity among all M(p, B)-algorithms for c

NETWORK-OBLIVIOUS MATRIX

TRANSPOSITION

∑ There exists an optimal network-aware algorithm for
transposition for each value of B and p

∑ There exists an optimal network-oblivious algorithm for
transposition when (n-tall block assumption)

∑ Can we remove the n-tall block assumption?

∑ Is the n-tall block a strong or weak assumption?

” It is a reminiscent of the tall-cache assumption

” Generally satisfied by real platforms

MATRIX TRANSPOSTION

Problem: transposition of a matrix

∑ We use a two-step algorithm based on Z-Morton

ordering

∑ Optimal communication complexity on

M(p, B) for p ≤ n and

∑ Optimal communication time on D-BSP(p, g, B) for

p ≤ n and

∑ Constraint is called n-tall block

assumption

Transform a Z-ordering in

a row-major ordering

Transform a Z-ordering in

a column-major ordering

CACHE-OBLIVIOUS MATRIX

TRANSPOSITION

∑ There exists an optimal cache-aware algorithm for
transposition for each value of M and B

∑ There exists an optimal cache-oblivious algorithm for
transposition when (tall-cache assumption)

∑ Can we remove the tall-cache assumption?

∑ The theorem can be extended to other rational
permutations (as the bit-reverse of a vector)

∑ Is the tall-cache a strong or weak assumption?

” Real caches are usually tall: i.e. M = 512 Kbyte, B = 32 byte

 ” Translation Lookaside Buffers (TLB) are usually not tall; i.e.
if a TLB is considered as a cache, M = 512 Kbyte, B = 4 Kbyte

THEOREM

There is no cache-oblivious matrix
transposition algorithm such that for
∀ M and B, its execution on the evaluation
model achieves optimal cache complexity

THEOREM

There is no network-oblivious matrix
transposition algorithm such that ∀ p ≤ n
and B ≤ n/p, its execution on M(p, B)
achieves optimal communication

complexity

OPTIMALITY RESULT

Remark: The actual wiseness and fullness conditions are less
restrictive

THEOREM

An optimal network-oblivious algorithm A exhibits an
asymptotically optimal communication time when executed

on a D-BSP(p, g, B) with p ≤ n under the following
conditions:

∑ Wiseness: for each superstep of A, its communications
are either almost all local or almost all non-local w.r.t. to
any M(p, B)

∑ Fullness: all communicated blocks are almost full

COMMUNICATION COST

∑ Communication heavily affects the efficiency of parallel algorithms

∑ Communication costs depend on:

” number of processors

” interconnection topology

” other machine-specific characteristics

∑ Models of computation for parallel algorithm design aim at striking

some balance between portability and effectiveness

CACHE-OBLIVIOUS ALGORITHMS

∑ Sequential platforms feature memory hierarchies:

” Many levels of memory

” Hierarchy characteristics (memory size, block length, ...) change

dramatically with levels and platforms

” Algorithms are required to be both efficient and portable

∑ Well-know solution: cache-oblivious algorithms [Frigo et al., 1999]

” Parameters M, B are not used for algorithm design

” Optimality in a cache-RAM hierarchy implies optimality in a multilevel

cache hierarchy

QUESTION

Can we design efficient parallel
algorithms oblivious to any
machine/model parameters?

Bandwidth-latency

BSP, QSM,
Decomposable-BSP,

LogP, ...

Universality

Fat-Tree,
Pruned Butterfly,

Mesh

Effectiveness +

Parallel Slackness

PRAM

+ Portability

MAIN RESULTS

∑ Network-oblvious algorithms:

” Notion of network-oblivious algorithm

” Framework for the design, analysis, and execution of network-oblivious algorithms

” Algorithms for case study applications: matrix multiplication and transposition, FFT and sorting

∑ Limits of cache and network-oblivious approaches:

” Impossibility result for cache-oblivious rational permutations (in particular, matrix transposition)

” Impossibility result for network-oblivious matrix transposition

∑ Some of the results are joint works with A. Pietracaprina, G. Pucci and G. Bilardi

PUBLICATIONS
Papers are available at http://www.dei.unipd.it/~silvest1

∑ F. Silvestri. On the Limts of Cache-Oblivious Rational Permutations. Special Issue of
TCS for selected TGC'06 papers. To appear.

∑ G. Bilardi, A. Pietracaprina, G. Pucci, and F. Silvestri. Network-Oblivious Algorithms. In
Proc. 21st IPDPS, 2007.

∑ F. Silvestri. On the Limits of Cache-Oblivious Matrix Transposition. In Proc. 2nd TGC,
Vol. 4661 of LNCS, pp. 233-243, 2006.

∑ A. Pietracaprina, G. Pucci, and F. Silvestri. Cache-Oblivious Simulation of Parallel
Programs. In Proc. 8th APDCM, 2006.

DEFINITIONS

Effectiveness:

Efficiency of algorithms in the model of computation

translates into efficiency of execution on target platforms

Portability:

The ability of compiling and running programs in the

model over a wide class of platforms

These works have been supported in part by the EU/IST project
AEOLUS, and by MIUR of Italy under project MAINSTREAM.

